资源类型

期刊论文 21

会议信息 1

年份

2023 3

2022 3

2021 1

2020 1

2019 4

2018 1

2014 1

2012 1

2011 1

2009 1

2008 5

展开 ︾

关键词

展开 ︾

检索范围:

排序: 展示方式:

Near-field radiative thermoelectric energy converters: a review

Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG

《能源前沿(英文)》 2018年 第12卷 第1期   页码 5-21 doi: 10.1007/s11708-017-0517-z

摘要: Radiative thermoelectric energy converters, which include thermophotovoltaic cells, thermoradiative cells, electroluminescent refrigerators, and negative electroluminescent refrigerators, are semiconductor p-n devices that either generate electricity or extract heat from a cold body while exchanging thermal radiation with their surroundings. If this exchange occurs at micro or nanoscale distances, power densities can be greatly enhanced and near-field radiation effects may improve performance. This review covers the fundamentals of near-field thermal radiation, photon entropy, and nonequilibrium effects in semiconductor diodes that underpin device operation. The development and state of the art of these near-field converters are discussed in detail, and remaining challenges and opportunities for progress are identified.

关键词: energy conversion systems     luminescent refrigeration     near-field radiation     thermophotovoltaic     thermoradiative cell    

Polymeric nanocomposites for electrocaloric refrigeration

《能源前沿(英文)》 2023年 第17卷 第4期   页码 450-462 doi: 10.1007/s11708-022-0858-0

摘要: Electrocaloric refrigeration represents an alternative solid-state cooling technology that has the potential to reach the ultimate goal of achieving zero-global-warming potential, highly efficient refrigeration, and heat pumps. To date, both polymeric and inorganic oxides have demonstrated giant electrocaloric effect as well as respective cooling devices. Although both polymeric and inorganic oxides have been identified as promising cooling methods that are distinguishable from the traditional ones, they still pose many challenges to more practical applications. From an electrocaloric material point of view, electrocaloric nanocomposites may provide a solution to combine the beneficial effects of both organic and inorganic electrocaloric materials. This article reviews the recent advancements in polymer-based electrocaloric composites and the state-of-the-art cooling devices operating these nanocomposites. From a device point of view, it discusses the existing challenges and potential opportunities of electrocaloric nanocomposites.

关键词: nanocomposites     electrocaloric     refrigeration     polymer    

New refrigeration system using CO vapor-solid as refrigerant

HUANG Dongping, DING Guoliang, QUACK Hans

《能源前沿(英文)》 2008年 第2卷 第4期   页码 494-498 doi: 10.1007/s11708-008-0070-x

摘要: A refrigerant must be in the vapor-liquid phase in a vapor-compression refrigeration system, therefore, CO cannot be used as a refrigerant for temperatures lower than -56°C because solid CO will form under the triple point temperature of -56°C. A refrigeration system with CO vapor-solid particles as refrigerant is put forward, by which a temperature lower than the triple point is achieved. An adjustable nozzle, a sublimator, a high-pressure regulating valve and a low-pressure regulating valve are used to replace the conventional evaporator. Theoretical cycle analysis of the refrigeration system shows that its COP can be 50% higher than that of the conventional one.

关键词: refrigerant     adjustable     temperature     vapor-compression refrigeration     sublimator    

Decoding and quantitative detection of antibiotics by a luminescent mixed-lanthanide-organic framework

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1589-5

摘要:

● A series of mixed-LOFs and portable LOF-fibers were synthesized.

关键词: Antibiotics     Sensor     Luminescence     Lanthanide-organic frameworks    

analysis of cogeneration systems based on micro gas turbine (MGT), organic Rankine cycle and ejector refrigeration

Zemin BO, Kai ZHANG, Peijie SUN, Xiaojing LV, Yiwu WENG

《能源前沿(英文)》 2019年 第13卷 第1期   页码 54-63 doi: 10.1007/s11708-018-0606-7

摘要: In this paper, the operation performance of three novel kinds of cogeneration systems under design and off-design condition was investigated. The systems are MGT (micro gas turbine) + ORC (organic Rankine cycle) for electricity demand, MGT+ ERC (ejector refrigeration cycle) for electricity and cooling demand, and MGT+ ORC+ ERC for electricity and cooling demand. The effect of 5 different working fluids on cogeneration systems was studied. The results show that under the design condition, when using R600 in the bottoming cycle, the MGT+ ORC system has the lowest total output of 117.1 kW with a thermal efficiency of 0.334, and the MGT+ ERC system has the largest total output of 142.6 kW with a thermal efficiency of 0.408. For the MGT+ ORC+ ERC system, the total output is between the other two systems, which is 129.3 kW with a thermal efficiency of 0.370. For the effect of different working fluids, R123 is the most suitable working fluid for MGT+ ORC with the maximum electricity output power and R600 is the most suitable working fluid for MGT+ ERC with the maximum cooling capacity, while both R600 and R123 can make MGT+ ORC+ ERC achieve a good comprehensive performance of refrigeration and electricity. The thermal efficiency of three cogeneration systems can be effectively improved under off-design condition because the bottoming cycle can compensate for the power decrease of MGT. The results obtained in this paper can provide a reference for the design and operation of the cogeneration system for distributed energy systems (DES).

关键词: cogeneration system     different working fluids     micro gas turbine (MGT)     organic Rankine cycle (ORC)     ejector refrigeration cycle (ERC)    

Available energy analysis of new tandem double-capillary tube refrigeration system for refrigerator-freezers

HE Maogang, ZHANG Ying, SONG Xinzhou, ZHANG Jiantao

《能源前沿(英文)》 2008年 第2卷 第1期   页码 36-42 doi: 10.1007/s11708-008-0013-6

摘要: A new tandem double-capillary tube refrigeration system for refrigerator-freezers is proposed. A capillary tube was added between the two evaporators in the fresh and frozen food storage chests to raise the evaporation temperature of the refrigerating chamber, and reduce the heat exchange temperature difference and the available energy loss. Peng-Robinson (P-R) equation of state was adopted to calculate the thermodynamic properties of the refrigerants, and the available energy analysis of the vapor compression refrigeration cycle was programmed to calculate the thermodynamic performances of the new and the conventional refrigeration cycle of the refrigerator-freezer. The calculation results show that the available energy efficiency of the conventional refrigeration cycle of the refrigerator-freezer is 21.20% and 20.57%, respectively when the refrigerant is R12 and R134a, while that of the double-capillary tube refrigeration cycle of the refrigerator-freezer is 23.97% and 23.44%, respectively. By comparison, the available energy efficiency of the new refrigeration system increases by 13.07% and 13.95%, respectively.

Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental

Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1288-z

摘要: Abstract • Acute toxicity assessment was conducted in Luoma lake watershed, East China. • Impacts of environmental factors on the toxicity testing was fully evaluated. • Dissolve oxygen had a weak positive correlation with luminescence inhibition rate. Protecting the quality of lake watersheds by preventing and reducing their contamination is an effective approach to ensure the sustainability of the drinking water supply. In this study, acute toxicity assessment was conducted on the basis of acute bioluminescence inhibition assay using the marine bacterium Vibrio fischeri as the test organism and Luoma Lake drinking water source in East China as the research target. The suitable ranges of environmental factors, including pH value, organic matter, turbidity, hardness, and dissolved oxygen of water samples were evaluated for the toxicity testing of bioluminescent bacteria. The physicochemical characteristics of water samples at the selected 43 sites of Luoma Lake watershed were measured. Results showed that the variations in pH value (7.31–8.41), hardness (5–20 °d) and dissolved oxygen (4.44–11.03 mg/L) of Luoma Lake and its main inflow and outflow rivers had negligible impacts on the acute toxicity testing of V. fischeri. The luminescence inhibition rates ranged from -11.21% to 10.80% at the 43 sites. Pearson’s correlation analysis in the experiment revealed that temperature, pH value, hardness, and turbidity had no correlation with luminescence inhibition rate, whereas dissolved oxygen showed a weak statistically positive correlation with a Pearson correlation coefficient of 0.455 (p<0.05).

关键词: Bioluminescent bacteria     Acute toxicity     Pearson correlation analysis     Drinking water source     Vibrio fischeri    

Performance analysis of solar absorption-subcooled compression hybrid refrigeration system in subtropical

Xiangyang YE,Liming LIU,Zeyu LI

《能源前沿(英文)》 2019年 第13卷 第1期   页码 185-192 doi: 10.1007/s11708-017-0452-z

摘要: Solar absorption-subcooled compression hybrid refrigeration system is a new type of efficient and economical solar refrigeration device which always meets the demand of cooling load with the change of solar irradiance. The performance of the hybrid system is higher due to the improvement of evaporator temperature of absorption subsystem. But simultaneously, the variation of working process as well as performance is complicated since the absorption and compression subsystems are coupled strongly. Based on the measured meteorological data of Guangzhou, a subtropical city in south China, a corresponding parametric model has been developed for the hybrid refrigeration system, and a program written by Fortran has been used to analyze the performance of the hybrid system under different external conditions. As the condensation temperature ranges from 38°C to 50°C, the working time fraction of the absorption subsystem increases from 75% to 85%. Besides, the energy saving fraction also increases from 5.31% to 6.02%. The average COP of the absorption subsystem is improved from 0.366 to 0.407. However, when the temperature of the absorption increases from 36°C to 48°C, the average COP of hybrid system decreases from 2.703 to 2.312. Moreover, the working time fraction of the absorption subsystem decreases from 80% to 71.7%. The energy saving fraction falls from 5.67% to 5.08%. In addition, when the evaporate temperature increases from 4°C to 14°C, the average COP of the absorption subsystem decreases from 0.384 to 0.365. The work of the compressor decreases from 48.2 kW to 32.8 kW and the corresponding average COP of the absorption subsystem is improved from 2.591 to 3.082.

关键词: solar     absorption-subcooled     compression hybrid     dynamic simulation     performance analysis    

Research on performance of mixed absorption refrigeration for solar air-conditioning

WAN Zhongmin, SHU Shuiming, HU Xinhua, WANG Biaohua

《能源前沿(英文)》 2008年 第2卷 第2期   页码 222-226 doi: 10.1007/s11708-008-0017-2

摘要: A novel lithium bromide/water mixed absorption refrigeration cycle that is suitable for the utilization of solar air-conditioning and can overcome the drawbacks of low system overall efficiency of traditional solar absorption refrigeration air-condition systems is presented. The accessorial high pressure generator was added in the cycle. The lithium bromide solution flowing out from the high pressure generator was mixed with the solution from the low pressure absorber to increase lithium bromide solution concentration and decrease pressure in the high pressure absorber. The performance of a mixed absorption refrigeration cycle was analyzed. The theoretical analysis shows that the highest COP is 0.61, while the highest available temperature difference of heat resource is 33.2°C. The whole coefficient of performance of the solar air-conditioning using mixed absorption cycle is 94.5% higher than that of two-stage absorption. The advantages of solar air-conditioning can be markedly made use of by the cycle.

ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment

D. SENDIL KUMAR,R. ELANSEZHIAN

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 75-80 doi: 10.1007/s11465-014-0285-y

摘要:

In this paper the reliability and performance of a vapour compression refrigeration system with ZnO nanoparticles in the working fluid was investigated experimentally. Nanorefrigerant was synthesized on the basis of the concept of the nanofluids, which was prepared by mixing ZnO nanoparticles with R152a refrigerant. The conventional refrigerant R134a has a global warming potential (GWP) of 1300 whereas R152a has a significant reduced value of GWP of 140 only. An experimental test rig is designed and fabricated indigenously in the laboratory to carry out the investigations. ZnO nanoparticles with refrigerant mixture were used in HFC R152a refrigeration system. The system performance with nanoparticles was then investigated. The concentration of nano ZnO ranges in the order of 0.1% v, 0.3% v and 0.5%v with particle size of 50 nm and 150 g of R152a was charged and tests were conducted. The compressor suction pressure, discharge pressure and evaporator temperature were measured. The results indicated that ZnO nanorefrigerant works normally and safely in the system. The ZnO nanoparticle concentration is an important factor considered for heat transfer enhancement in the refrigeration system. The performance of the system was significantly improved with 21% less energy consumption when 0.5%v ZnO-R152a refrigerant. Both the suction pressure and discharge pressure were lowered by 10.5% when nanorefrigerant was used. The evaporator temperature was reduced by 6% with the use of nanorefrigerant. Hence ZnO nanoparticles could be used in refrigeration system to considerably reduce energy consumption. The usage of R152a with zero ozone depleting potential (ODP) and very less GWP and thus provides a green and clean environment. The complete experimental results and their analysis are reported in the main paper.

关键词: ZnO nanorefrigerant     reduced GWP     COP     pressure ratio green energy    

Photoluminescent properties of Sb

Fushan WEN, Lingling SUN, Jinhyeok KIM

《化学科学与工程前沿(英文)》 2011年 第5卷 第4期   页码 429-434 doi: 10.1007/s11705-011-1138-4

摘要: Sb -doped YBO crystals were prepared through a low-temperature hydrothermal method and a high-temperature solid-state technique, respectively. The effects of preparation methods on the morphologies and luminescent properties of YBO phosphors were investigated. The YBO crystals from the hydrothermal system look like flowers, whereas those from the solid-state process look like some agglomerates of little spheres. The Sb -doped YBO powders prepared via both methods showed the blue emission with the peak at around 452 nm, which corresponds to the P → S transition of Sb ions. However, the emission intensity of the Sb -doped YBO from the hydrothermal system is about 3.5 times as much as that from the solid-state process. The (Sb ,Eu ) co-doped YBO crystals were also prepared through the two methods. The results showed that the emission intensity of Sb ions in (Sb , Eu ) co-doped YBO synthesized by the hydrothermal method is stronger than that by the solid-state process.

关键词: hydrothermal     solid-state     luminescent     borate    

Phase transition regulation and caloric effect

《能源前沿(英文)》 2023年 第17卷 第4期   页码 463-477 doi: 10.1007/s11708-023-0860-1

摘要: Solid state refrigeration based on caloric effect is regarded as a potential candidate for replacing vapor-compression refrigeration. Numerous methods have been proposed to optimize the refrigeration properties of caloric materials, of which single field tuning as a relatively simple way has been systemically studied. However, single field tuning with few tunable parameters usually obtains an excellent performance in one specific aspect at the cost of worsening the performance in other aspects, like attaining a large caloric effect with narrowing the transition temperature range and introducing hysteresis. Because of the shortcomings of the caloric effect driven by a single field, multifield tuning on multicaloric materials that have a coupling between different ferro-orders came into view. This review mainly focuses on recent studies that apply this method to improve the cooling performance of materials, consisting of enlarging caloric effects, reducing hysteresis losses, adjusting transition temperatures, and widening transition temperature spans, which indicate that further progress can be made in the application of this method. Furthermore, research on the sign of lattice and spin contributions to the magnetocaloric effect found new phonon evolution mechanisms, calling for more attention on multicaloric effects. Other progress including improving cyclability of FeRh alloys by introducing second phases and realizing a large reversible barocaloric effect by hybridizing carbon chains and inorganic groups is described in brief.

关键词: phase transition regulation     caloric effect     solid state refrigeration    

Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration

《能源前沿(英文)》 2022年 第16卷 第1期   页码 19-22 doi: 10.1007/s11708-022-0820-1

of 1,3-dimethylimidazolylium dimethylphosphate-water binary mixture for a single effect absorption refrigeration

Gorakshnath TAKALKAR, Ahmad K. SLEITI

《能源前沿(英文)》 2022年 第16卷 第3期   页码 521-535 doi: 10.1007/s11708-021-0720-9

摘要: The energy and exergy analyses of the absorption refrigeration system (ARS) using H O-[mmim][DMP] mixture were investigated for a wide range of temperature. The equilibrium Dühring ( - - ) and enthalpy ( - - ) of mixture were assessed using the excess Gibbs free non-random two liquid (NRTL) model for a temperature range of 20°C to 140°C and from 0.1 to 0.9. The performance validation of the ARS cycle showed a better coefficient of performance (COP) of 0.834 for H O-[mmim][DMP] in comparison to NH -H O, H O-LiBr, H O-[emim][DMP], and H O-[emim][BF4]. Further, ARS performances with various operating temperatures of the absorber ( ), condenser ( ), generator ( ), and evaporator ( ) were simulated and optimized for a maximum COP and exergetic COP (ECOP). The effects of from 50°C to 150°C and and from 30°C to 50°C on COP and ECOP, the , , and circulation ratio (CR) of the ARS were evaluated and optimized for from 5°C to 15°C. The optimization revealed that needed to achieve a maximum COP which was more than that for a maximum ECOP. Therefore, this investigation provides criteria to select low grade heat source temperature. Most of the series flow of the cases of cooling water from the condenser to the absorber was found to be better than the absorber to the condenser.

关键词: ionic liquid driven absorption cycle     H2O-[mmim][DMP]     coefficient of performance (COP)     exergy analysis     thermodynamics mixture property    

Self-assembled bright luminescent hierarchical materials from a tripodal benzoate antenna and heptadentate

Aramballi J. Savyasachi, David F. Caffrey, Kevin Byrne, Gerard Tobin, Bruno D'Agostino, Wolfgang Schmitt, Thorfinnur Gunnlaugsson

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 171-184 doi: 10.1007/s11705-018-1762-3

摘要:

The europium heptadentate coordinatively unsaturated (Eu(III)) and the terbium (Tb(III)) 1,4,7,10-tetraazacyclododecane (cyclen) complexes 1 and 2 were used in conjunction with ligand 3 (1,3,5-benzene-trisethynylbenzoate) to form the supramolecular self-assembly structures 4 and 5; this being investigated in both the solid and the solution state. The resulting self-assemblies gave rise to metal centered emission (both in the solid and solution) upon excitation of 3, confirming its role as a sensitizing antenna. Drop-cased examples of ligand 3, and the solid forms of 4 and 5, formed from both organic and mixture of organic-aqueous solutions, were analyzed using Scanning Electron Microscopy, which showed significant changes in morphology; the ligand giving rise to one dimensional structures, while both 4 and 5 formed amorphous materials that were highly dense solid networks containing nanoporous features. The surface area (216 and 119 m2·g1 for 4 and 5 respectively) and the ability of these porous materials to capture and store gases such as N2 investigated at 77 K. The self-assembly formation was also investigated in diluted solution by monitoring the various photophysical properties of 3–5. This demonstrated that the most stable structures were that consisting of a single antennae 3 and three complexes of 1 or 2 (e.g., 4 and 5) in solution. By monitoring the excited state lifetimes of the Eu(III) and Tb(III) ions in H2O and D2O respectively, we showed that their hydration states (the q-value) changed from ~2 to 0, upon formation of the assemblies, indicating that the three benzoates of 3 coordinated directly to the each of the three lanthanide centers. Finally we demonstrate that this hierarchically porous materials can be used for the sensing of organic solvents as the emission is highly depended on the solvent environment; the lanthanide emission being quenched in the presence of acetonitrile and THF, but greatly enhanced in the presence of methanol.

关键词: self-assembly     supramolecular chemistry     lanthanides     Eu(III) and Tb(III) complexes     luminescence     metallostars    

标题 作者 时间 类型 操作

Near-field radiative thermoelectric energy converters: a review

Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG

期刊论文

Polymeric nanocomposites for electrocaloric refrigeration

期刊论文

New refrigeration system using CO vapor-solid as refrigerant

HUANG Dongping, DING Guoliang, QUACK Hans

期刊论文

Decoding and quantitative detection of antibiotics by a luminescent mixed-lanthanide-organic framework

期刊论文

analysis of cogeneration systems based on micro gas turbine (MGT), organic Rankine cycle and ejector refrigeration

Zemin BO, Kai ZHANG, Peijie SUN, Xiaojing LV, Yiwu WENG

期刊论文

Available energy analysis of new tandem double-capillary tube refrigeration system for refrigerator-freezers

HE Maogang, ZHANG Ying, SONG Xinzhou, ZHANG Jiantao

期刊论文

Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental

Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou

期刊论文

Performance analysis of solar absorption-subcooled compression hybrid refrigeration system in subtropical

Xiangyang YE,Liming LIU,Zeyu LI

期刊论文

Research on performance of mixed absorption refrigeration for solar air-conditioning

WAN Zhongmin, SHU Shuiming, HU Xinhua, WANG Biaohua

期刊论文

ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment

D. SENDIL KUMAR,R. ELANSEZHIAN

期刊论文

Photoluminescent properties of Sb

Fushan WEN, Lingling SUN, Jinhyeok KIM

期刊论文

Phase transition regulation and caloric effect

期刊论文

Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration

期刊论文

of 1,3-dimethylimidazolylium dimethylphosphate-water binary mixture for a single effect absorption refrigeration

Gorakshnath TAKALKAR, Ahmad K. SLEITI

期刊论文

Self-assembled bright luminescent hierarchical materials from a tripodal benzoate antenna and heptadentate

Aramballi J. Savyasachi, David F. Caffrey, Kevin Byrne, Gerard Tobin, Bruno D'Agostino, Wolfgang Schmitt, Thorfinnur Gunnlaugsson

期刊论文